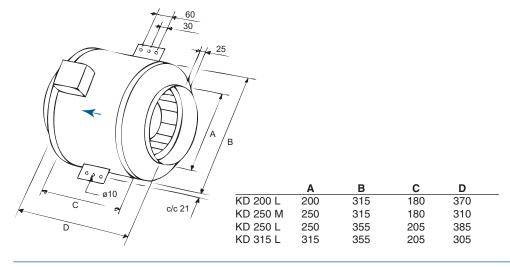
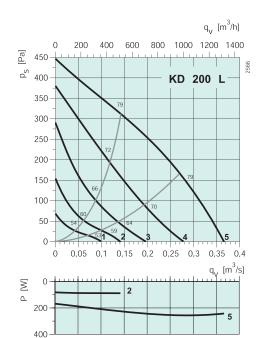
KD 200-315

Рекомендации по применению: Приточно-вытяжные системы вентиляции, когда необходимо перемещать большие объемы воздуха с относительно высоким статическим давлением и низким уровнем шума.

Конструкция: Компактный корпус KD из оцинкованной листовой стали. На корпусе имеются монтажные скобы для удобного монтажа.

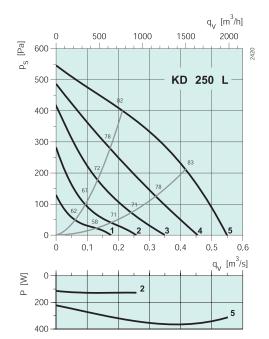

Двигатель: Применяются двигатели с внешним ротором, снабженные встроенными термоконтактами с электрическим перезапуском для защиты от перегрева.

Регулирование скорости: осуществляется с помощью бесступенчатого тиристора или 5-ти ступенчатого трансформатора.


Монтаж: Вентиляторы KD устанавливаются в воздуховодах круглого сечения. Монтаж осуществляется под любым углом относительно оси вентилятора, хомуты FK упрощают монтаж и демонтаж, а также предотвращают передачу вибрации на воздуховоды. **Сертификаты:** Сертификаты соответствия РФ и Украины.

KD		200 L1	250 M1	250 L1	315 L1
Напряжение/Частота В/5	ОГц	230	230	230	230
Фазность	~	1	1	1	1
Потребляемая мощность	Вт	257	254	369	372
Ток	Α	1,14	1,13	1,61	1,62
Макс. расход воздуха м³/с (м	₁ 3/4)	0,37 (1325)	0,40 (1425)	0,55 (1985)	0,59 (2135)
Частота вращения мі	ин-1	2562	2572	2604	2595
Макс. температура перемещаемого воздуха	°C	55	55	70	70
" при регулировании	°C	46	45	70	70
Уровень звукового давления на расст. 3 м *дl	5(A)	53	54	55	54
Bec	ΚΓ	7	7	10	9
Класс изоляции двигателя		F	F	F	F
Класс защиты двигателя		IP 44	IP 44	IP 44	IP 44
Емкость конденсатора	икФ	6	6	10	10
Тип термозащиты		встроенная	встроенная	встроенная	встроенная
Регулятор скорости, 5-ступенч. Трансформа	атор	RE 1,5	RE 1,5	RE 3	RE 3
Регулятор 5-ст., высок./низк.скоростьТрансформ	иатор	REU 1,5	REU 1,5	REU 3	REU 3
Регулятор скорости, бесшаговый Тирис	тор	REE 2	REE 2	REE 2	REE 2
Схема подключения, стр. 11-17		2	2	2	2

^{*} В соответствии с эквивалентной площадью поглощения 20 м² Сэбин

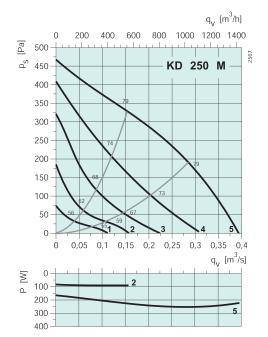


KD 200L

Октавные полосы частот. Гц

	Гц (Эбщ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	79	60	70	72	76	70	64	63	57
L_{wA} К выходу	дБ(А)	84	55	70	76	76	75	78	75	73
L _{wA} K окружению	дБ(А)	60	26	26	45	55	56	53	48	38
C LDC 200-90	0									
L_{wA} K входу	дБ(А)	69	58	66	64	52	38	30	50	47

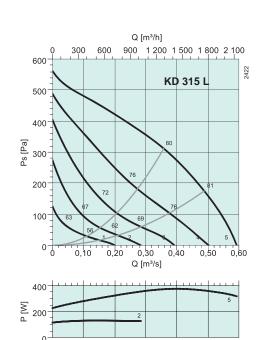
 L_{WA} К входу \quad дБ(A) 69 58 66 64 52 38 30 50 47 L_{WA} К выходу \quad дБ(A) 72 53 66 68 52 43 44 62 63 $\,$ Условия испытаний: $q_{V}=0.2$ м³/с, $P_{S}=256$ Па



KD 250 L

Октавные полосы частот, Гц

	Hz	Tot	63	125	250	500	1k	2k	4k	8k
L _{wA} K входу	дБ(А)	82	55	73	76	78	74	71	71	64
L _{wA} К выходу	дБ(А)	82	57	71	72	76	73	76	70	63
L _{wA} K окружению	дБ(А)	62	28	34	43	61	49	47	50	37
C LDC 250-900	0									


 L_{wA} К входу дБ(A) 72 52 69 68 58 48 48 61 56 L_{wA} К выходу дБ(A) 70 54 67 64 56 47 53 60 55 Условия испытаний: $q_v = 0.34$ м³/с, $P_s = 296$ Па

KD 250 M

Октавные полосы частот. Гц

	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	79	55	67	70	76	72	66	65	61
L_{wA} К выходу	дБ(А)	79	55	70	72	74	72	71	65	58
L _{wA} К окружению	дБ(А)	61	22	27	42	56	56	53	50	43
C LDC 250-90	0									
L_{wA} К входу	дБ(А)	67	52	63	62	56	46	43	55	53
L_wA К выходу	дБ(А)	69	52	66	64	54	46	48	55	50
Условия испыта	аний: q	_v = (0,23	м ³ /с	, P _s :	= 26	1 Па	3		

KD 315 L

Октавные полосы частот, Гц

	Hz	Tot	63	125	250	500	1k	2k	4k	8k			
L _{wA} K входу	дБ(А)	80	58	69	71	75	75	71	69	67			
L _{wA} К выходу	дБ(А)	81	54	68	70	73	75	76	71	65			
L _{wA} К окружению	дБ(А)	61	32	36	44	60	50	47	48	40			
C LDC 315-90	C LDC 315-900												
	E (4)				~ .								

 $L_{\rm WA}$ К входу дБ(A) 71 57 66 64 59 52 59 63 60 $L_{\rm WA}$ К выходу дБ(A) 72 53 65 63 57 53 64 65 58 Условия испытаний: ${\bf q}_{\rm v}=0.36~{\rm m}^3/{\rm c},~{\bf P}_{\rm S}=312~{\rm \Pia}$

FK c. 466

SG c. 466

VK c. 467

IGK c. 467

RSK c. 449

LDC c. 453

FFR c. 447

CB c. 435

RE c. 421

REU c. 421

REE c. 422

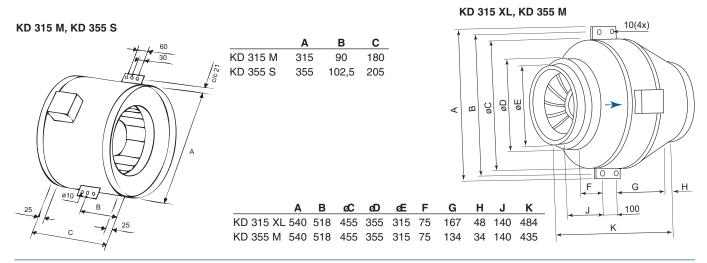
KD 315-355

KD 315 M, KD 355 S

Рекомендации по применению: Приточно-вытяжные системы, когда необходимо перемещать большие объемы воздуха с относительно высоким статическим давлением и низким уровнем шума.

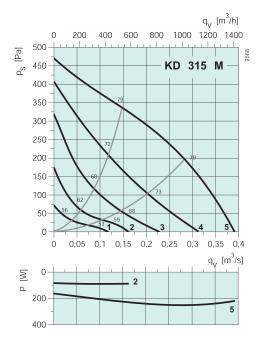
Конструкция: Компактный корпус KD из оцинкованной листовой стали. На корпусе имеются монтажные скобы для удобного монтажа.

Двигатель: Применяются двигатели с внешним ротором и новым типом диагональных лопастей, что позволяет уменьшить габариты вентиляторов. Двигатели снабжены встроенными термоконтактами с электрическим перезапуском для защиты от перегрева. Модель KD 315XL снабжена встроенными термоконтактами с выводами для подключения внешнего устройства защиты.

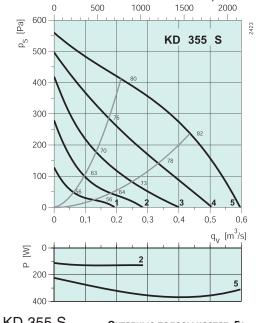

Регулирование скорости: осуществляется с помощью бесступенчатого тиристора или 5-ти ступенчатого трансформатора

Монтаж: Вентиляторы КD устанавливаются в воздуховодах круглого сечения. Монтаж осуществляется под любым углом относительно оси вентилятора, хомуты FK упрощают монтаж и демонтаж, а также предотвращают передачу вибрации на воздуховоды.

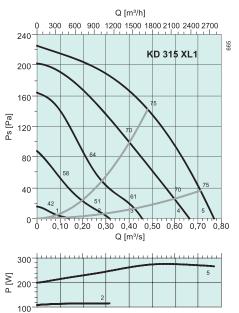
Сертификаты: Сертификаты соответствия РФ и Украины.


KD		315 M1	355 S1	315 XL1	355 M1
Напряжение/Частота	В/50Гц	230	230	230	230
Фазность	~	1	1	1	1
Потребляемая мощность	Вт	252	371	276	275
Ток	Α	1,12	1,61	1,29	1,30
Макс. расход воздуха	м ³ /с (м ³ /ч)	0,39 (1415)	0,60 (2152)	0,77 (2765)	0,85 (3056)
Частота вращения	мин ⁻¹	2573	2597	1375	1375
Макс. температура перемещаемого	воздуха °C	55	70	70	70
" при регулировании	°C	46	70	70	70
Уровень звукового давления на расс	ст. 3 м *дБ(А)	59	54	52	50
Bec	КГ	7	9	16	15
Класс изоляции двигателя		F	F	В	F
Класс защиты двигателя		IP 44	IP 44	IP 54	IP 54
Емкость конденсатора	мкФ	6	10	6	6
Тип термозащиты		Встроенная	Встроенная	S-ET 10	S-ET 10
Регулятор скорости, 5-ступенч. Тр	ансформатор	RE 1,5	RE 3	RTRE 3	RE 1,5 или RTRE1,5
Регулятор 5-ст., высок./низк.скоростьТ	рансформатор	REU 1,5	REU 3	REU + S-ET 10	REU 1,5+S-ET 10
Регулятор скорости, бесшаговый	Тиристор	REE 2	REE 2	REE 2 + S-ET 10	REE 2+S-ET 10
Схема подключения, стр. 11-17		2	2	6	6

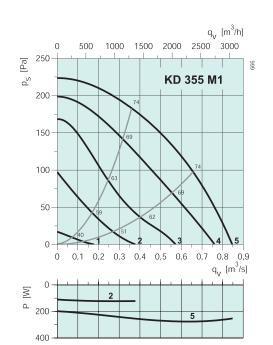
 $^{^{*}}$ В соответствии с эквивалентной площадью поглощения 20 м 2 Сэбин



 $q_V [m^3/h]$


KD 315 M		Oi	став	зные	пол	осы	ча	сто	г, Г	4
	Гц (Эбщ.	63	125	250	500	1k	2k	4k	8k
L _{wA} K входу	дБ(А)	79	54	64	68	76	73	68	66	62
L_{wA} К выходу	дБ(А)	81	59	69	70	76	75	74	67	60
L _{wA} К окружению	дБ(А)	66	32	33	41	65	50	46	45	40
C LDC 315-900)									
L_{wA} К входу	дБ(А)	68	53	63	61	60	51	55	60	55
I , K BHIYOTIV	лБ(А)	71	58	67	65	60	53	62	61	53

Условия испытаний: $q_v = 0.23 \text{ м}^3/\text{c}$, $P_s = 263 \text{ Па}$



KD 333 3		O	ктан	вные	• пол	осы	ча	сто	г, Г	Ļ
	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L_{wA} К входу	дБ(А)	80	56	69	70	75	74	72	70	68
L_wA К выходу	дБ(А)	83	57	69	69	76	77	78	72	66
L _{wA} K окружению	дБ(А)	60	32	32	39	59	49	48	49	40
C LDC 355-900)									
L_{wA} К входу	дБ(А)	72	56	66	64	62	56	62	64	61
I . K BLIVOTIV	пБ(Δ)	73	57	66	63	63	50	68	66	50

Условия испытаний: $q_v = 0.37 \text{ м}^3/\text{c}$, $P_s = 305 \text{ }\Pi\text{a}$

KD 315 XL	_1	0	ктаі	зные	е пол	осы	ча	сто	г, Гі	4
					250					
L_{wA} К входу	дБ(А)	74	60	63	68	70	68	61	56	46
L_{wA} K выходу	дБ(А)	75	59	69	66	68	69	66	56	48
L _{wA} K окружению	дБ(А)	59	33	42	51	52	55	52	38	27
C LDC 315-90	0									
L_{wA} К входу	дБ(А)	66	59	60	62	54	46	49	50	39
L_{wA} K выходу									50	40
Условия испыта	аний: с	q _v =	0,48	3 м ³ /	c, P _s	= 14	3 П	а		

KD 355 M	1	0	ктав	зные	• пол	осы	час	сто	г, Г	Ļ
	Гц (Эбщ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	73	62	65	67	66	65	61	56	46
L_{wA} К выходу	дБ(А)	75	57	69	66	68	70	65	56	48
L _{wA} К окружению	дБ(А)	57	40	40	48	51	52	49	38	27
C LDC 355-90	0									
L _{wA} K входу	дБ(А)	67	62	62	61	53	47	51	50	39
L_{wA} K выходу	дБ(А)	69	57	66	60	55	52	55	50	41
Vсповид испыта	ний. т	n –	0.53	N/3/	^ P	- 14	5 П	a		

FK c. 466

SG c. 466

VK c. 467

RSK c. 449

LDC c. 453

FFR c. 447

CB c. 435

S-ET c. 426

RTRE c. 421

RE c. 421

REU c. 42

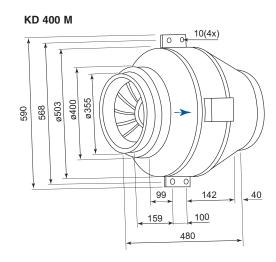
REE c. 422

KD 355 XL-400M

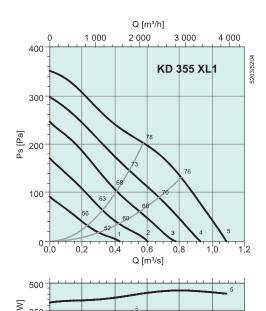
Рекомендации по применению: Приточно-вытяжные системы, когда необходимо перемещать большие объемы воздуха с относительно высоким статическим давлением и низким уровнем шума.

Конструкция: Компактный корпус КD из оцинкованной листовой стали. На корпусе имеются монтажные скобы для удобного монтажа. Двигатель: Применяются двигатели с внешним ротором и новым типом диагональных лопастей, что позволяет уменьшить габариты вентиляторов. Двигатели снабжены встроенными термоконтактами с выводами для подключения внешнего устройства защиты.

Регулирование скорости: осуществляется с помощью бесступенчатого тиристора или 5-ти ступенчатого трансформатора.

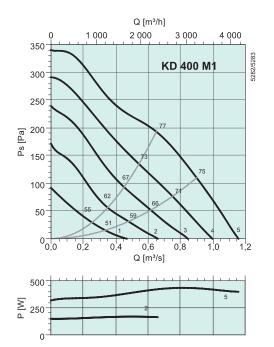

Монтаж: Вентиляторы KD устанавливаются в воздуховодах круглого сечения. Монтаж осуществляется под любым углом относительно оси вентилятора, хомуты FK упрощают монтаж и демонтаж, а также предотвращают передачу вибрации на воздуховоды.

Сертификаты: Сертификаты соответствия РФ и Украины.


KD		355 XL1	355 XL3	400 M1	400 M3
Напряжение/Частота В/5	ОГц	230	400	230	400
Фазность	~	1	3	1	3
Потребляемая мощность	Вт	431	451	432	456
Ток	Α	1,90	0,96	1,90	0,95
Макс. расход воздуха м³/с (м	₁ 3/4)	1,09 (3920)	1,16 (4158)	1,16 (4169)	1,22 (4392)
Частота вращения мі	ин-1	1309	1399	1307	1397
Макс. температура перемещаемого воздуха	°C	70	70	70	70
" при регулировании	°C	70	70	70	70
Уровень звукового давления на расст. 3 м *дl	5(A)	56	58	53	57
Bec	KΓ	21	19	21	19
Класс изоляции двигателя		F	F	F	F
Класс защиты двигателя		IP 54	IP 54	IP 54	IP 54
Емкость конденсатора	икФ	10	-	10	-
Тип термозащиты		S-ET 10	STDT 16	S-ET 10	STDT 16
Регулятор скорости, 5-ступенч. Трансформа	атор	RTRE 3	RTRD 2	RTRE 3	RTRD 2
Регулятор 5-ст., высок./низк.скоростьТрансформ	иатор	REU 3 + S-ET 10	RTRDU 2	REU 3 + S-ET 10	RTRDU 2
Регулятор скорости, бесшаговый Тирис	тор	REE 4 + S-ET 10	-	REE 4 +S-ET 10	-
Схема подключения, стр. 11-17		6	8	6	8

^{*} В соответствии с эквивалентной площадью поглощения 20 м² Сэбин

KD 355 XL | 00 | 10(4x) | 100

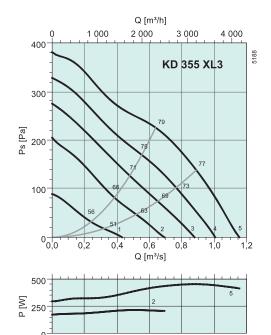


KD 355 XL1

Октавные полосы частот, Гц

	Гц (Общ	.63	125	250	500	1k	2k	4k	8k
L _{wA} K входу	дБ(А)	78	55	75	72	69	66	62	61	56
L _{wA} K выходу	дБ(А)	78	50	75	70	70	68	65	64	59
L _{wA} K окружению	дБ(А)	63	26	48	60	59	53	47	47	42
C LDC 355-90	0									
I , K BYOUV	лБ(А)	70	52	69	59	51	56	56	54	49

 $L_{\rm WA}$ К входу дБ(A) 70 52 69 59 51 56 56 54 49 $L_{\rm WA}$ К выходу дБ(A) 70 47 69 57 52 58 59 57 52 Условия испытаний: ${\rm q_v}=0.58~{\rm m}^3/{\rm c},~{\rm P_S}=202~{\rm \Pi a}$

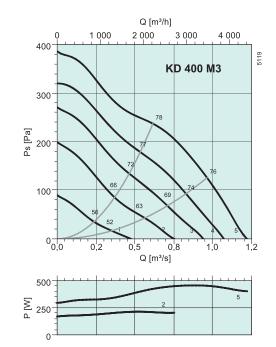

KD 400 M1

Октавные полосы частот, Гц

									,	•
	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	77	52	73	71	69	64	61	60	54
L_{wA} K выходу	дБ(А)	77	48	73	70	71	68	65	64	59
L _{wA} K окружению	дБ(А)	60	27	45	56	57	51	46	46	39
C LDC 400-900	0									
L_{wA} К входу	дБ(А)	70	49	68	61	56	57	56	54	47

L_{WA} К выходу дБ(A) 70 45 68 60 58 61 60 58 52

Условия испытаний: $q_v = 0.65 \text{ м}^3/\text{c}$, $P_s = 193 \text{ }\Pi\text{a}$



KD 355 XL3

Октавные полосы частот. Гц

	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	79	55	77	73	71	67	63	63	57
L_{wA} К выходу	дБ(А)	79	50	76	71	72	70	66	66	61
L _{wA} К окружению	дБ(А)	65	29	52	60	60	57	51	51	42
C LDC 355-900)									
I K BYORY	nF(Λ)	72	52	71	60	53	57	57	56	50

 L_{WA} К входу дБ(A) 72 52 71 60 53 57 57 56 50 L_{WA} К выходу дБ(A) 71 47 70 58 54 60 60 59 54 Условия испытаний: $q_{\rm V}=0.64$ м³/с, $P_{\rm S}=226$ Па

KD 400 M3

Октавные полосы частот, Ги

		Октавные полосы частот,								
	Гц	Общ	.63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	78	54	76	72	70	67	63	62	57
L _{wA} К выходу	дБ(А)	79	51	74	71	72	71	67	65	61
L _{wA} Кокружению	дБ(А)	64	24	47	60	59	56	49	49	44
C LDC 400-900	1									
L _{wA} К входу	дБ(А)	72	51	71	62	57	60	58	56	50
L _{мл} К выходу	дБ(А)	72	48	69	61	59	64	62	59	54

Условия испытаний: $q_v = 0.62 \text{ м}^3/\text{c}$, $P_s = 237 \text{ Па}$

FK c. 466

SG c. 466

VK c. 467

RSK c. 449

LDC c. 453

FFR c. 447

CB c. 435

S-ET/STDT c. 426

RTRE c. 421

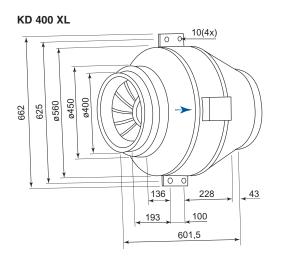
RE C. 42

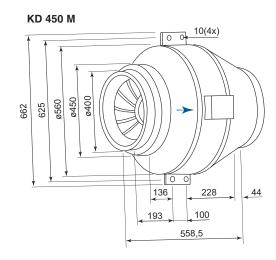
REU c. 421

REE c. 422

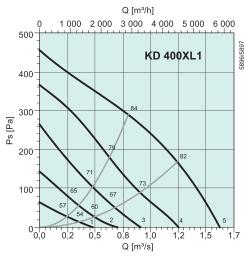
KD 400 XL-450 M3

Рекомендации по применению: Приточно-вытяжные системы, когда необходимо перемещать большие объемы воздуха с относительно высоким статическим давлением и низким уровнем шума. Конструкция: Компактный корпус КD из оцинкованной листовой стали. На корпусе имеются монтажные скобы для удобного монтажа

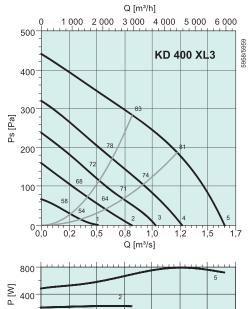

Двигатель: Применяются двигатели с внешним ротором и новым типом диагональных лопастей, что позволяет уменьшить габариты вентиляторов. Двигатели снабжены встроенными термоконтактами с выводами для подключения внешнего устройства защиты.


Регулирование скорости: осуществляется с помощью бесступенчатого тиристора или 5-ти ступенчатого трансформатора. Монтаж: Вентиляторы КD устанавливаются в воздуховодах круглого сечения. Монтаж осуществляется под любым углом относительно оси вентилятора, хомуты FK упрощают монтаж и демонтаж, а также предотвращают передачу вибрации на воздуховоды.

Сертификаты: Сертификаты соответствия РФ и Украины.


KD		400 XL1	400 XL3	450 M1	450 M3
Напряжение/Частота В/5	ОГц	230	400	230	400
Фазность	~	1	3	1	3
Потребляемая мощность	Вт	855	792	857	778
Ток	Α	4,24	1,53	4,21	1,53
Макс. расход воздуха м ³ /с (м	₁ 3/4)	1,62 (5839)	1,65 (5936)	1,60 (5774)	1,64 (5915)
Частота вращения мі	ин ⁻¹	1298	1304	1308	1307
Макс. температура перемещаемого воздуха	°C	65	67	65	70
" при регулировании	°C	65	67	65	70
Уровень звукового давления на расст. 3 м *дВ	5(A)	64	61	61	63
Bec	KΓ	32	29	31	29
Класс изоляции двигателя		F	F	F	F
Класс защиты двигателя		IP 54	IP 54	IP 54	IP 54
Емкость конденсатора	икФ	16	-	16	-
Тип термозащиты		S-ET 10	STDT 16	S-ET 10	STDT 16
Регулятор скорости, 5-ступенч. Трансформа	атор	RTRE 5	RTRD 2	RTRE 5	RTRD 2
Регулятор 5-ст., высок./низк.скоростьТрансформ	иатор	REU 5 + S-ET 10	RTRDU 2	REU 5 + S-ET 10	RTRDU 2
Регулятор скорости, бесшаговый Тирис	тор	-	-	-	-
Схема подключения, стр. 11-17		6	8	6	8


^{*} В соответствии с эквивалентной площадью поглощения 20 м² Сэбин

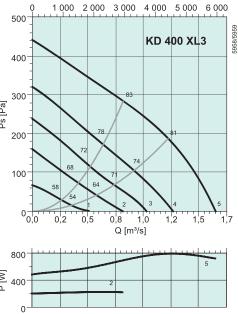


KD 400 XL1

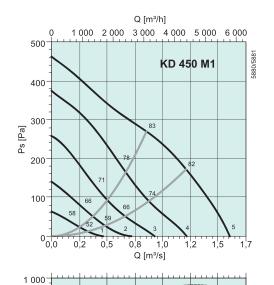
Октавные полосы частот, Гц

	Гц (Эбщ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	84	55	79	78	78	71	68	66	58
L_{wA} K выходу	дБ(А)	85	55	79	80	79	75	71	69	61
L _{wA} K окружению	дБ(А)	68	11	53	60	66	58	54	51	41
C LDC 400-90	0									

L_{wA} К входу дБ(А) 76 52 74 68 65 64 63 60 51 LwA К выходу дБ(A) 77 52 74 70 66 68 66 63 54 Условия испытаний: $q_v = 0.80 \text{ м}^3/\text{c}, P_S = 290 \text{ }\Pi\text{a}$



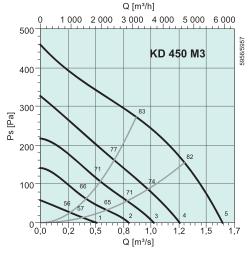
KD 400 XL3

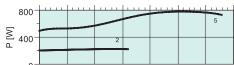

Октавные полосы частот. Гц

	Гц (Эбш	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	83	53	78	77	77	71	68	66	58
L _{wA} K выходу	дБ(А)	85	55	78	79	79	75	72	70	60
L _{wA} K окружению	дБ(А)	68	18	44	61	65	61	53	51	42
C LDC 400-90	0									

дБ(А) 75 50 73 67 64 64 63 60 51 L_{wA} К входу __{wA} K выходу дБ(A) 77 52 73 69 66 68 67 64 53 Условия испытаний: $q_v = 0.82 \text{ м}^3/\text{c}, P_S = 283 \Pi \text{a}$

	Гц (Эбш	. 63	125	250	500	1k	2k	4k	8k
_А К входу	дБ(А)	83	53	78	77	77	71	68	66	58
_А К выходу	дБ(А)	85	55	78	79	79	75	72	70	60
_А К окружению	дБ(А)	68	18	44	61	65	61	53	51	42
LDC 400-90	0									


KD 450 M1


500

P [M

Октавные полосы частот, Гц

	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} K входу	дБ(А)	83	57	78	79	77	69	68	65	58
L _{wA} К выходу	дБ(А)	83	52	75	76	79	75	70	66	61
L _{wA} K окружению	дБ(А)	68	25	47	67	61	56	55	50	43
Условия испытаний: q _v = 1,12 м ³ /с, P _s = 234 Па										

KD 450 M3

Октавные полосы частот, Гц

	Гц (Общ	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	83	53	78	78	77	68	68	66	58
L_{wA} К выходу	дБ(А)	84	52	77	77	80	75	71	69	61
L _{wA} К окружению	дБ(А)	70	15	45	68	66	59	53	50	42
Условия испытаний: $q_v = 0.87 \text{ м}^3/\text{c}$, $P_s = 273 \text{ Па}$										

FK c. 466

SG c. 466

RSK c. 449

LDC c. 453

FFR c. 447

CB c. 435

S-ET/STDT c. 426

RTRE c. 421

REU c. 421

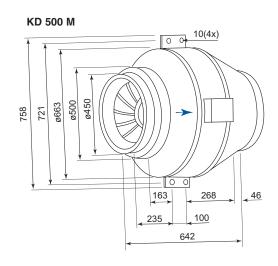
REE c. 422

KD 450 XL-500 M3

Рекомендации по применению: Приточно-вытяжные системы, когда необходимо перемещать большие объемы воздуха с относительно высоким статическим давлением и низким уровнем шума. Конструкция: Компактный корпус КD из оцинкованной листовой стали. На корпусе имеются монтажные скобы для удобного монта-

Двигатель: Применяются двигатели с внешним ротором и новым типом диагональных лопастей, что позволяет уменьшить габариты вентиляторов. Двигатели снабжены встроенными термоконтактами с выводами для подключения внешнего устройства защиты.

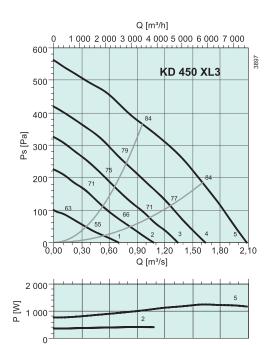
Регулирование скорости: осуществляется с помощью бесступенчатого тиристора или 5-ти ступенчатого трансформатора.


Монтаж: Вентиляторы КD устанавливаются в воздуховодах круглого сечения. Монтаж осуществляется под любым углом относительно оси вентилятора, хомуты FK упрощают монтаж и демонтаж, а также предотвращают передачу вибрации на воздуховоды.

Сертификаты: Сертификаты соответствия РФ и Украины.

KD		450 XL1	450 XL3	500 M1	500 M3
Напряжение/Частота	В/50Гц	230	400	230	400
Фазность	~	1	3	1	3
Потребляемая мощность	Вт	1392	1246	1386	1243
Ток	Α	6,16	2,22	6,12	2,23
Макс. расход воздуха	м ³ /с (м ³ /ч)	2,35 (8460)	2,08 (7495)	2,37 (8530)	2,18 (7848)
Частота вращения	мин ⁻¹	1290	1325	1290	1315
Макс. температура перемещаемого	о воздуха °C	60	61	62	62
" при регулировании	°C	60	30	57	51
Уровень звукового давления на рас	сст. 3 м *дБ(A)	61	61	64	64
Bec	КГ	42	38	42	39
Класс изоляции двигателя		F	F	F	F
Класс защиты двигателя		IP 54	IP 54	IP 54	IP 54
Емкость конденсатора	мкФ	30	-	30	-
Тип термозащиты		S-ET 10	STDT 16	S-ET 10	STDT 16
Регулятор скорости, 5-ступенч.	Грансформатор	RTRE 7	RTRD 4	RTRE 7	RTRD 4
Регулятор 5-ст., высок./низк.скорость	-Трансформатор	REU 7 + S-ET 10	RTRDU 4	REU 7 + S-ET 10	RTRDU 4
Регулятор скорости, бесшаговый	й Тиристор	-	-	-	-
Схема подключения, стр. 11-17		6	8	6	8

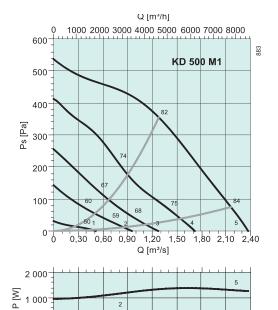
^{*} В соответствии с эквивалентной площадью поглощения 20 м² Сэбин


$q_V [m^3/h]$ 4000 8000 2000 6000 600 p_s [Pa] 500 KD 450 XL1 400 300 200 100 0 - $\boldsymbol{q}_{\boldsymbol{V}} \ [\boldsymbol{m}^3/\boldsymbol{s}]$ 500 1000 1500

KD 450 XL1

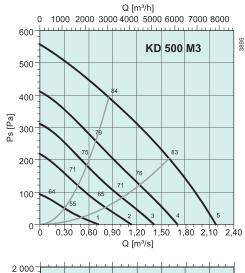
Октавные полосы частот, Гц

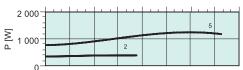
	Гц Об	ц. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А) 83	3 70	77	76	75	73	73	66	59
L_{wA} К выходу	дБ(А) 82	2 71	76	73	76	76	72	66	60
L _{wA} K окружению	дБ(А) 68	36	55	60	65	61	59	46	40
VCПОВИЯ ИСПЫТА	аний. а	= 1.3	м3/с	P. =	343	Па			


Вентиляторы для круглых каналов

KD 450 XL3

Октавные полосы частот, Гц


	Гц (Обш	. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А)	84	64	76	78	78	77	73	66	60
L _{wA} K выходу	дБ(А)	86	61	76	78	82	81	75	69	63
L _{wA} К окружению	дБ(А)	68	34	48	60	61	65	60	47	40
Условия испыта	аний: с	q _v =	0,96	3/c	c, P _s	= 36	5 П	а		



KD 500 M1

Октавные полосы частот, Гц

	OKTODIDIO HONOODI HOOTOT, TA										
	Гц (Эбш	. 63	125	250	500	1k	2k	4k	8k	
L _{wA} K входу	дБ(А)	82	69	75	75	75	73	72	65	59	
L_{wA} К выходу	дБ(А)	83	70	75	72	76	78	73	67	60	
L _{wA} К окружению	дБ(А)	71	41	58	63	68	64	60	48	48	
Voповид испытаний: д = 1.28 м ³ /с Р = 355 Па											

KD 500 M3

Октавные полосы частот, Гц

	Гц Об	щ. 63	125	250	500	1k	2k	4k	8k
L _{wA} К входу	дБ(А) 8	4 66	77	78	78	75	73	66	60
L_{wA} K выходу	дБ(А) 8	6 62	78	77	82	81	75	68	63
L _{wA} К окружению								55	51
Условия испытаний: $q_v = 1,28 \text{ м}^3/\text{c}$, $P_s = 356 \text{ Па}$									

FK c. 466

SG c. 466

VK c. 46

S-ET/STDT c. 426

RTRE c. 421

RTRD c. 422

REU c. 421